Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Ophthalmol ; 32(1): 193-199, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33827296

RESUMO

PURPOSE: To demonstrate the underlying genetic defect that contribute to inherited cataract in a northern Chinese pedigree. METHODS: The study recruited a family pedigree with a diagnosis of bilateral coronary cataract with blue punctate opacities. Fourteen family members and 100 healthy volunteers were enrolled. DNA sample of the proband in this family were analyzed by high-throughput sequencing, which was then demonstrated by Sanger sequencing in the remained people in the family and 100 controls. The functional effect of mutant genes was investigated via bioinformatics analysis, including Polymorphism Phenotyping version2 (PolyPhen-2), Protein Variation Effect Analyzer (PROVEAN v1.1.3) Scale-Invariant Feature Transform (SIFT), and Mutation Taster. RESULTS: In this three-generation family, a novel heterozygous mutation was found in the kinase domain of CRYBA1 gene (c.340C > T, p.R114C), which was only detected in patients in the family with inherited cataract and were not detected in the remained people in the family nor in normal people. The pathogenic effect of the mutation was verified via bioinformatics analysis. CONCLUSION: Our study presented the molecular experiments to confirm that a novel missense mutation of c.340 C > T located in exon 4 of CRYBA1 gene results in a bilateral coronary cataract with blue punctate opacities, which enriches the mutation spectrum of CRYBA1 gene in inherited cataract and deepens the understanding of the pathogenesis of inherited cataract.


Assuntos
Catarata , Mutação de Sentido Incorreto , Cadeia A de beta-Cristalina , Catarata/genética , China , Análise Mutacional de DNA , Humanos , Linhagem , Cadeia A de beta-Cristalina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...